The Role of Artificial Intelligence in Detecting Wind Erosion Phenomena in the Eastern Province of Wasit Using RS and GIS and Its Relationship to Sustainable Development
DOI:
https://doi.org/10.31185/eduj.Vol60.Iss3.4753Keywords:
Artificial Intelligence, Remote Sensing, Geographic Information Systems, Reflex AnalysisAbstract
Wind is one of the permanent environmental factors in the formation of the general geomorphological appearance, as the work of the wind is familiar anywhere where the surface materials are dismantled and not protected by natural plant. The wind is a geomorphological factor in dry environments with the availability of fine-grained soils, sediments and transport processes through creeping, jumping, scattering or scattering and attachment. The ability of the wind to erose, tract and transport particles of soil and rocks depends on the nature of the surface, soil and rocks as well as on wind speed. There is no doubt that the work of the wind is weaker than the work of water and ice in the process of erosion and transportation, so we find a wide scope for it in the desert areas in which it is active, which forms land forms resulting from their work in rock tables and rocky belisks, as well as other forms resulting from wind sediments represented by sand dunes such as: crescent, longitudinal, nabha (Nabka), star and transverse dunes in areas where wind speed is low. It has become necessary to monitor the areas of the sand dunes using remote sensing data and monitoring the spread of sand dunes. It is important and necessary to control natural risks. Therefore, geomorphological studies are interested in following the latest means and techniques in reaching the most accurate results. Therefore, the study sought to use the best programs such as artificial intelligence in determining the fields of sand dunes and their spaces after using space visuals such as Al-Ghariya fields, Sheikh Saad and Jasan.
Downloads
References
Ali, E. (2022). Detection of Dunes Using Multispectral Satellite Images Based on Machine Learning Techniques. PH.D. (Unpublished), Faculty of Computer Science and Mathematics, University of Kufa.
F.E Russell. (n.d.). Land Forms and maps . III ustratadby David fead away , perg mon press .
Fan،Rong-En،Kai-Wei Chang, X.-R.-J. (2008). LIBLINEAR: A library for large linear classification. the Journal of machine Learning research 9.
H. Jiang. (2021). Machine Learning Fundamentals، A Concise Introduction. Cambridge University Press. DOI: https://doi.org/10.1017/9781108938051
Suthaharan, S. (2016). "Support vector machine." Machine learning models and algorithms for big data classification: thinking with examples for effective learning. DOI: https://doi.org/10.1007/978-1-4899-7641-3
الدراسة الميدانية بتاريخ 4/3/2023. (بلا تاريخ).
سعد جاسم محمد،ياسين ضلحي عواد حسن،الدليمي. (2002). اساسيات علم الجيومورفولوجيا. ط1، الدار العلمية الدولية للنشر والتوزيع.
ظافر مندل عطية الحصيني. (2013). جيومورفية الكثبان الرملية جنوب محافظة ذي قار باستخدام تقنيات الاستشعار عن بعد ونظم المعلومات الجغرافية . رسالة ماجستير (غير منشورة) ، جامعة ذي قار ، كلية الآداب .
عبد الجبار جلوب حسن المالكي. (1995). دراسة حركة وتثبيت الكثبان الرملية في منطقة شيخ سعد بالعراق. اطروحة دكتوراه (غير منشورة)، جامعة البصرة، كلية الزراعة.
عدنان باقر،مهدي محمد علي النقاش،الصحاف. (1989). الجيوموفولوجي. مطبعة جامعة بغداد.
علي الشيب . (2011). الكثبان الرملية . قسم الجغرافية ، كلية الآداب ، جامعة قطر .
مريم عبد الامير مطرود الطائي. (2016). جيومورفية الكثبان الرملية في قضاء الرفاعي. رسالة ماجستير(غير منشوره) جامعة ذي قار، كلية الآداب.
وفيق حسين، عبد الوهاب الخشاب،الدباغ. (1964). اشكال سطح الارض . بغداد: مطبعة دار الزمان.
ولاء كامل صبري حسين الاسدي. (2010). الكثبان الرملية في محافظة المثنى (دراسة جيومورفية تطبيقية). رسالة ماجستير (غير منشورة) ، جامعة بغداد، كلية الآداب.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 م.م زهراء هادي عليوي، أ.د. احمد هاشم عبد الحسين، أ.م.د عباس فاضل عبيد

This work is licensed under a Creative Commons Attribution 4.0 International License.