Temperature Trends and Change Points in Iraq

Authors

  • Dr. Ahmed Lafta Hamad Al-Budeiri Wasit Governorate Education Directorate

DOI:

https://doi.org/10.31185/eduj.Vol60.Iss3.4754

Keywords:

Climate change, Change points, Temperature, Trend, Iraq.

Abstract

This study provides a temporal and spatial analysis of trends in maximum and minimum temperatures in Iraq during the period (1950-2022) (73 years) for twelve stations representing various regions of the country, based on data from the Climate Research Unit (CRU TS v4.07). The study employs the Mann-Kendall test to assess the statistical significance of trends, Sen’s method to estimate the rate of change, and the Taylor test to identify change points.The findings reveal a significant increasing trend in both maximum and minimum temperatures, with an annual change rate ranging between 1.8 – 1.9°C per century. Seasonal variations were more pronounced in summer and spring, particularly in the southern regions, where the change in minimum temperatures ranged between 0.38 – 0.43°C per decade, indicating that minimum temperatures are more affected by climate change.Iraq has experienced statistically significant change points across all stations, particularly in the 1990s, with 75% of the stations showing change points in 1994, aligning with global trends. These climatic shifts are expected to exacerbate economic and environmental pressures, particularly in agricultural production, water resource management, and energy consumption.Thus, it is crucial to adopt effective future policies and strategies to adapt to climate change and mitigate its negative impacts.

Downloads

Download data is not yet available.

References

أحمد لفتة حمد البديري. (2021). اتجاهات التغير في درجات الحرارة والامطار في العراق واسقاطاتها المستقبلية. مجلة الاداب بغداد(137)، الصفحات 443-472. DOI: https://doi.org/10.31973/aj.v3i137.1129

سالار علي خضر. (2018). المراحل التاريخية لتصنيف كوبن المناخي ومحاوله تعديله. مجلة الآداب, 1(124) , 459-484. https://doi.org/10.31973/aj.v1i124.102 DOI: https://doi.org/10.31973/aj.v1i124.102

عباس فاضل السعدي. (2009). جغرافية العراق: إطارها الطبيعي، نشاطها الاقتصادي، جانبها البشري، الدار الجامعية، بغداد.

المصادر باللغة الانكليزية

Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason, B., Klein Tank, A. M. G., Haylock, M., Collins, D., Trewin, B., & Rahimzadeh, F. (2006). Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research: Atmospheres, 111(D5). DOI: https://doi.org/10.1029/2005JD006290

Almazroui, M., Saeed, S., Saeed, F., Islam, M. N., & Ismail, M. (2020). Projections of Precipitation and Temperature over the South Asian Countries in CMIP6. Earth Systems and Environment, 4(2), 297–320. https://doi.org/10.1007/s41748-020-00157-7 DOI: https://doi.org/10.1007/s41748-020-00157-7

El Kenawy, A. M., McCabe, M. F., Vicente-Serrano, S. M., López-Moreno, J. I., & Robaa, S. M. (2016). Cambios en la frecuencia y severidad en las sequías hidrológicas de Etiopía entre 1960 y 2013. Cuadernos de Investigacion Geografica, 42(1), 145–166. https://doi.org/10.18172/cig.2931 DOI: https://doi.org/10.18172/cig.2931

El Kenawy, Ahmed M, & McCabe, M. F. (2016). A multi‐decadal assessment of the performance of gauge‐and model‐based rainfall products over Saudi Arabia: climatology, anomalies and trends. International Journal of Climatology, 36(2), 656–674. DOI: https://doi.org/10.1002/joc.4374

Harris, I., Osborn, T. J., Jones, P., & Lister, D. (2020). Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific Data, 7(1), 1–18. DOI: https://doi.org/10.1038/s41597-020-0453-3

Hassan, I., Kalin, R. M., White, C. J., & Aladejana, J. A. (2020). Evaluation of daily gridded meteorological datasets over the Niger Delta region of Nigeria and implication to water resources management. Atmospheric and Climate Sciences, 10(1), 21–39. DOI: https://doi.org/10.4236/acs.2020.101002

Jones, P. D., New, M., Parker, D. E., Martin, S., & Rigor, I. G. (1999). Surface air temperature and its changes over the past 150 years. Reviews of Geophysics, 37(2), 173–199. DOI: https://doi.org/10.1029/1999RG900002

Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., & Gomis, M. I. (2021). Climate change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 2(1), 2391.

Muslih, K. D., & Krzysztof, B. (2016). The inter-annual variations and the long-term trends of monthly air temperatures in Iraq over the period 1941 – 2013. https://doi.org/10.1007/s00704-016-1915-6 DOI: https://doi.org/10.1007/s00704-016-1915-6

Robaa, E.-S. M., & Al-Barazanji, Z. (2015). Mann-Kendall trend analysis of surface air temperatures and rainfall in Iraq. IDOJARAS, 119(4), 493–514.

Salman, S. A., Shahid, S., Ismail, T., Ahmed, K., Chung, E.-S., & Wang, X.-J. (2019). Characteristics of annual and seasonal trends of rainfall and temperature in Iraq. Asia-Pacific Journal of Atmospheric Sciences, 55(3), 429–438. DOI: https://doi.org/10.1007/s13143-018-0073-4

Salmi, T. (2002). Detecting trends of annual values of atmospheric pollutants by the Mann-Kendall test and Sen’s slope estimates-the Excel template application MAKESENS. Ilmatieteen laitos.

Taylor, W. A. (2000). Change-point analysis: a powerful new tool for detecting changes. preprint.

Ullah, S., You, Q., Sachindra, D. A., Nowosad, M., Ullah, W., Bhatti, A. S., Jin, Z., & Ali, A. (2022). Spatiotemporal changes in global aridity in terms of multiple aridity indices: An assessment based on the CRU data. Atmospheric Research, 268, 105998. DOI: https://doi.org/10.1016/j.atmosres.2021.105998

Downloads

Published

2025-08-28

Issue

Section

Articles

How to Cite

Dr. Ahmed Lafta Hamad Al-Budeiri. (2025). Temperature Trends and Change Points in Iraq. Journal of Education College Wasit University, 60(3), 253-268. https://doi.org/10.31185/eduj.Vol60.Iss3.4754